Limb movements during locomotion: Tests of a model of an intersegmental coordinating circuit.
نویسندگان
چکیده
During normal forward swimming, the swimmerets on neighboring segments of the crayfish abdomen make periodic power-stroke movements that have a characteristic intersegmental difference in phase. Three types of intersegmental interneurons that originate in each abdominal ganglion are necessary and sufficient to maintain this phase relationship. A cellular model of the intersegmental coordinating circuit that also produces the same intersegmental phase has been proposed. In this model, coordinating axons synapse with local interneurons in their target ganglion and form a concatenated circuit that links neighboring segmental ganglia. This model assumed that coordinating axons projected to their nearest-neighboring ganglion but not farther. We tested this assumption in two sets of experiments. If the assumption is correct, then blocking synaptic transmission in an intermediate ganglion should uncouple swimmeret activity on opposite sides of the block. We bathed individual ganglia in a low Ca(2+)-high Mg(2+) saline that effectively silenced both motor output from the ganglion and the coordinating interneurons that originated in it. With this block in place, other ganglia on opposite sides of the block could nonetheless maintain their normal phase difference. Simultaneous recordings of spikes in coordinating axons on opposite sides of the blocked ganglion showed that these axons projected beyond the neighboring ganglion. Selective bilateral ablation of the tracts in which these axons ran showed that they were necessary and usually sufficient to maintain coordination across a blocked ganglion. We discuss revisions of the cellular model of the coordinating circuit that would incorporate these new results.
منابع مشابه
Intersegmental coordination of limb movements during locomotion: mathematical models predict circuits that drive swimmeret beating.
Normal locomotion in arthropods and vertebrates is a complex behavior, and the neural mechanisms that coordinate their limbs during locomotion at different speeds are unknown. The neural modules that drive cyclic movements of swimmerets respond to changes in excitation by changing the period of the motor pattern. As period changes, however, both intersegmental phase differences and the relative...
متن کاملCoordination of limb movements: three types of intersegmental interneurons in the swimmeret system and their responses to changes in excitation.
Coordination of limb movements: three types of intersegmental interneurons in the swimmeret system and their responses to changes in excitation. During forward locomotion, the movements of swimmerets on different segments of the crayfish abdomen are coordinated so that more posterior swimmerets lead their anterior neighbors by approximately 25%. This coordination is accomplished by mechanisms w...
متن کاملSpinal circuits can accommodate interaction torques during multijoint limb movements
The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to cen...
متن کاملCoordination of cellular pattern-generating circuits that control limb movements: the sources of stable differences in intersegmental phases.
Neuronal mechanisms in nervous systems that keep intersegmental phase lags the same at different frequencies are not well understood. We investigated biophysical mechanisms that permit local pattern-generating circuits in neighboring segments to maintain stable phase differences. We use a modified version of an existing model of the crayfish swimmeret system that is based on three known coordin...
متن کاملProprioceptive feedback modulates coordinating information in a system of segmentally distributed microcircuits
The system of modular neural circuits that controls crustacean swimmerets drives a metachronal sequence of power-stroke (PS, retraction) and return-stroke (RS, protraction) movements that propels the animal forward efficiently. These neural modules are synchronized by an intersegmental coordinating circuit that imposes characteristic phase differences between these modules. Using a semi-intact ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 19 شماره
صفحات -
تاریخ انتشار 2001